import random import pandas as pd ques_patch = pd.read_csv('./utils/question_list.csv', header=None) ques_patch = ques_patch[0].tolist() ques_wsi = pd.read_csv('./utils/question_wsi_list.csv', header=None) ques_wsi = ques_wsi[0].tolist() def patch_formatting_itp(examples, tokenizer): question = random.choice(ques_patch) answer = examples["txt"] text = f"<|Question|>{question}" + f"<|Answer|>{answer}{tokenizer.eos_token}" # text = f" {answer}{tokenizer.eos_token}" examples["text"] = text return examples def patch_formatting_vqap(examples, tokenizer): question = examples["question"] answer = examples["answer"] question = question.replace("\n", "") question = question.replace("", "") text = f"<|Question|>{question}" + f"<|Answer|>{answer}{tokenizer.eos_token}" examples["text"] = text return examples # CNX-PathLLM/MultiConversation # [{'from': 'human', 'value': 'What are the key features of this image that suggest chronic pancreatitis?'}, # {'from': 'gpt', 'value': 'The presence of duct dilatation, fibrosis, and pancreatic tissue necrosis are indicative of chronic pancreatitis.}] def patch_formatting_vmc(examples, tokenizer): # image conversations conversation = examples["conversations"] conversation = ast.literal_eval(conversation) text = "" for sentence in conversation: sentence['value'] = sentence['value'].replace("\n", "") sentence['value'] = sentence['value'].replace("", "") if sentence['from'] == 'human': text += f"<|Question|>{sentence['value']}" elif sentence['from'] == 'gpt': text += f"<|Answer|>{sentence['value']}{tokenizer.eos_token}" examples["text"] = text return examples def patch_formatting_ytb(examples, tokenizer): text = examples['conversations'].replace("\n", "").replace("", "") question = ast.literal_eval(text[1:-1].split('\n')[0])['value'].replace("\n", "") answer = ast.literal_eval(text[1:-1].split('\n')[1])['value'].replace("\n", "") text = f"<|Question|>{question}" + f"<|Answer|>{answer}{tokenizer.eos_token}" # text = f"{answer}{tokenizer.eos_token}" examples["text"] = text return examples def wsi_formatting_des(examples, tokenizer): question = random.choice(ques_wsi) answer = examples["description"] text = f"<|Question|>{question}" + f"<|Answer|>{answer}{tokenizer.eos_token}" examples["text"] = text examples["text_input"] = question return examples def wsi_formatting_qa_open(examples, tokenizer): question = examples["question"] answer = examples["answer"] text = f"<|Question|>{question}" + f"<|Answer|>{answer}{tokenizer.eos_token}" examples["text"] = text examples["text_input"] = question return examples def wsi_formatting_qa_close(examples, tokenizer, prompt_tag=False): question = examples["question"] answer = examples["answer"] if answer.lower() in ['yes', 'no']: prompt = f" Please provide only the answer (either Yes or No) for the following statement. Do not include any explanations or additional text. Just give Yes or No." else: prompt = f" Please provide only the answer (for example, A. [Answer Text], B. [Answer Text], etc.) for the following question. Do not include any explanations or additional text. Just give the letter followed by the corresponding answer." if prompt_tag: text = f"<|Question|>{question}<|Prompt|>{prompt}" + f"<|Answer|>{answer}{tokenizer.eos_token}" else: text = f"<|Question|>{question}" + f"<|Answer|>{answer}{tokenizer.eos_token}" examples["text"] = text examples["text_input"] = question return examples def wsi_formatting_des_test(examples, tokenizer): question = random.choice(ques_wsi) answer = examples["description"] text = f"<|Question|>{question}" + f"<|Answer|>" examples["text"] = text examples["answer"] = answer examples["question"] = question examples["text_input"] = question return examples def wsi_formatting_qa_open_test(examples, tokenizer): question = examples["question"] answer = examples["answer"] text = f"<|Question|>{question}" + f"<|Answer|>" examples["text"] = text examples["text_input"] = question return examples def wsi_formatting_qa_close_test(examples, tokenizer, prompt_tag=True): question = examples["question"] answer = examples["answer"] if answer.lower() in ['yes', 'no']: prompt = f" Please provide only the answer (either Yes or No) for the following statement. Do not include any explanations or additional text. Just give Yes or No." else: prompt = f" Please provide only the answer (for example, A. [Answer Text], B. [Answer Text], etc.) for the following question. Do not include any explanations or additional text. Just give the letter followed by the corresponding answer." if prompt_tag: text = f"<|Question|>{question}<|Prompt|>{prompt}" + f"<|Answer|>" else: text = f"<|Question|>{question}" + f"<|Answer|>" examples["text"] = text examples["text_input"] = question return examples