English
Llama-slideQA / demo /path_clip.py
weiheng-1009's picture
added code for running
cbff41a
import torch
from PIL import Image
import open_clip
## load the model
model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-16', pretrained="/bask/homes/a/asiw9691/PathVLM/PathClip/pathclip-base.pt",
force_quick_gelu=True)
tokenizer = open_clip.get_tokenizer('ViT-B-16')
model = model.cuda()
##load the image and prepare the text prompt
img_path = '/raid/hpc/hekai/WorkShop/My_project/PathLLM_new/data/test_data/test_path1.jpg'
label_description_list = ['apple', 'liver', 'cancer',] # specify the label descriptions
text_label_list = ['An image of {}'.format(i) for i in label_description_list]
image = Image.open(img_path)
image = preprocess(image).unsqueeze(0).cuda()
text = tokenizer(text_label_list).cuda()
## extract the img and text feature and predict the label
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
predict_label = torch.argmax(text_probs).item()
print(predict_label)