File size: 1,232 Bytes
cbff41a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import numpy as np
import os
import random
import torch
def seed_everything(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
if torch is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def clip_path_map(path):
if path=="pathclip-base":
return "/bask/homes/a/asiw9691/PathVLM/PathClip/pathclip-base.pt"
if path=="conch":
return "/bask/homes/a/asiw9691/PathVLM/CONCH/pytorch_model.bin"
# return "/home/z/zeyugao/PreModel/conch/pytorch_model.bin"
if path=="uni":
return "/bask/homes/a/asiw9691/PathVLM/UNI/pytorch_model.bin"
# return "/home/z/zeyugao/PreModel/uni/pytorch_model.bin"
def my_compute_metrics(p):
predictions, labels = p
predictions = np.argmax(predictions, axis=-1)
predictions = predictions[:, 2:]
mask = labels != -100
correct = (labels == predictions) & mask
accuracy = round(np.mean(correct) *100, 2)
return {
'accuracy': accuracy,
} |