File size: 6,858 Bytes
cbff41a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# accelerate launch --config_file=/raid/hpc/hekai/WorkShop/My_project/PathLLM_new/accelerate_configs/deepspeed_zero2.yaml demo/trl_demo.py
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "5"
from dataclasses import dataclass, field
from typing import Optional
import torch
from accelerate import Accelerator
from datasets import load_dataset
from peft import LoraConfig
from tqdm import tqdm
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, AutoTokenizer
from trl import SFTTrainer
tqdm.pandas()
# Define and parse arguments.
@dataclass
class ScriptArguments:
"""
The name of the Casual LM model we wish to fine with SFTTrainer
"""
model_name: Optional[str] = field(default="mistralai/Mistral-7B-Instruct-v0.2", metadata={"help": "the model name, meta-llama/Llama-2-7b-chat-hf "})
dataset_name: Optional[str] = field(default="stingning/ultrachat", metadata={"help": "the dataset name"})
dataset_text_field: Optional[str] = field(default="text", metadata={"help": "the text field of the dataset"})
log_with: Optional[str] = field(default="wandb", metadata={"help": "use 'wandb' to log with wandb"})
learning_rate: Optional[float] = field(default=2.0e-5, metadata={"help": "the learning rate"})
batch_size: Optional[int] = field(default=1, metadata={"help": "the batch size"})
seq_length: Optional[int] = field(default=1024, metadata={"help": "Input sequence length"})
gradient_accumulation_steps: Optional[int] = field(default=8, metadata={"help": "the number of gradient accumulation steps"})
evaluation_strategy: Optional[str] = field(default="steps", metadata={"help": "epoch, step"})
eval_steps: Optional[int] = field(default=2, metadata={"help": "the number of gradient accumulation steps"})
load_in_8bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 8 bits precision"})
load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"})
use_peft: Optional[bool] = field(default=True, metadata={"help": "Wether to use PEFT or not to train adapters"})
trust_remote_code: Optional[bool] = field(default=False, metadata={"help": "Enable `trust_remote_code`"})
output_dir: Optional[str] = field(default="output", metadata={"help": "the output directory"})
peft_lora_r: Optional[int] = field(default=64, metadata={"help": "the r parameter of the LoRA adapters"})
peft_lora_alpha: Optional[int] = field(default=16, metadata={"help": "the alpha parameter of the LoRA adapters"})
logging_steps: Optional[int] = field(default=5, metadata={"help": "the number of logging steps"})
token: Optional[bool] = field(default="True", metadata={"help": "Use HF auth token to access the model"})
num_train_epochs: Optional[int] = field(default=3, metadata={"help": "the number of training epochs"})
max_steps: Optional[int] = field(default=-1, metadata={"help": "the number of training steps"})
save_steps: Optional[int] = field(default=1000, metadata={"help": "Number of updates steps before two checkpoint saves"})
save_total_limit: Optional[int] = field(default=10, metadata={"help": "Limits total number of checkpoints."})
push_to_hub: Optional[bool] = field(default=False, metadata={"help": "Push the model to HF Hub"})
hub_model_id: Optional[str] = field(default="mistral-7b-finetuned-ultrachat", metadata={"help": "The name of the model on HF Hub"})
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
# Step 1: Load the dataset
tokenizer = AutoTokenizer.from_pretrained(script_args.model_name)
tokenizer.padding_side = 'right'
tokenizer.pad_token = tokenizer.eos_token
dataset = load_dataset(script_args.dataset_name, split="train[:200]")
dataset = dataset.train_test_split(test_size=0.1)
def prepare_dialogue(example):
text = ""
for idx, msg in enumerate(example["data"]):
if idx % 2 == 0:
text += f"<|user|>\n{msg}{tokenizer.eos_token}\n"
else:
text += f"<|assistant|>\n{msg}{tokenizer.eos_token}\n"
example["text"] = text
return example
dataset = dataset.map(prepare_dialogue, num_proc=4, remove_columns=["id", "data"])
# Step 2: Load the model
if script_args.load_in_8bit and script_args.load_in_4bit:
raise ValueError("You can't load the model in 8 bits and 4 bits at the same time")
elif script_args.load_in_8bit or script_args.load_in_4bit:
quantization_config = BitsAndBytesConfig(
load_in_8bit=script_args.load_in_8bit, load_in_4bit=script_args.load_in_4bit
)
# Copy the model to each device
device_map = {"": Accelerator().local_process_index}
torch_dtype = torch.bfloat16
else:
# device_map = "auto"
device_map = None
quantization_config = None
torch_dtype = None
model = AutoModelForCausalLM.from_pretrained(
script_args.model_name,
quantization_config=quantization_config,
device_map=device_map,
trust_remote_code=script_args.trust_remote_code,
torch_dtype=torch_dtype,
token=script_args.token,
)
# Step 4: Define the LoraConfig
if script_args.use_peft:
peft_config = LoraConfig(
r=script_args.peft_lora_r,
lora_alpha=script_args.peft_lora_alpha,
bias="none",
task_type="CAUSAL_LM",
)
else:
peft_config = None
training_args = TrainingArguments(
output_dir=script_args.output_dir,
per_device_train_batch_size=script_args.batch_size,
gradient_accumulation_steps=script_args.gradient_accumulation_steps,
gradient_checkpointing=True,
learning_rate=script_args.learning_rate,
logging_steps=script_args.logging_steps,
num_train_epochs=script_args.num_train_epochs,
max_steps=script_args.max_steps,
report_to=script_args.log_with,
save_steps=script_args.save_steps,
save_total_limit=script_args.save_total_limit,
# push_to_hub=script_args.push_to_hub,
# hub_model_id=script_args.hub_model_id,
bf16=True,
lr_scheduler_type="cosine",
warmup_ratio=0.1,
evaluation_strategy=script_args.evaluation_strategy,
eval_steps=script_args.eval_steps,
logging_first_step=True,
)
def my_compute_metrics(p):
predictions, labels = p
return {
'precision': 1,
'recall': 1,
'f1': 1,
}
trainer = SFTTrainer(
model=model,
args=training_args,
max_seq_length=script_args.seq_length,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
dataset_text_field=script_args.dataset_text_field,
peft_config=peft_config,
packing=False,
tokenizer=tokenizer,
compute_metrics=my_compute_metrics
)
trainer.train()
# Step 6: Save the model
trainer.save_model(script_args.output_dir)
|