English
File size: 6,858 Bytes
cbff41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

    
#   accelerate launch --config_file=/raid/hpc/hekai/WorkShop/My_project/PathLLM_new/accelerate_configs/deepspeed_zero2.yaml  demo/trl_demo.py 

import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "5"

from dataclasses import dataclass, field
from typing import Optional

import torch
from accelerate import Accelerator
from datasets import load_dataset
from peft import LoraConfig
from tqdm import tqdm
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, AutoTokenizer
from trl import SFTTrainer



tqdm.pandas()


# Define and parse arguments.
@dataclass
class ScriptArguments:
    """
    The name of the Casual LM model we wish to fine with SFTTrainer
    """

    model_name: Optional[str] = field(default="mistralai/Mistral-7B-Instruct-v0.2", metadata={"help": "the model name,  meta-llama/Llama-2-7b-chat-hf "})
    dataset_name: Optional[str] = field(default="stingning/ultrachat", metadata={"help": "the dataset name"})
    dataset_text_field: Optional[str] = field(default="text", metadata={"help": "the text field of the dataset"})
    log_with: Optional[str] = field(default="wandb", metadata={"help": "use 'wandb' to log with wandb"})
    learning_rate: Optional[float] = field(default=2.0e-5, metadata={"help": "the learning rate"})
    batch_size: Optional[int] = field(default=1, metadata={"help": "the batch size"})
    seq_length: Optional[int] = field(default=1024, metadata={"help": "Input sequence length"})
    gradient_accumulation_steps: Optional[int] = field(default=8, metadata={"help": "the number of gradient accumulation steps"})
    
    evaluation_strategy: Optional[str] = field(default="steps", metadata={"help": "epoch, step"})
    eval_steps: Optional[int] = field(default=2, metadata={"help": "the number of gradient accumulation steps"})

    load_in_8bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 8 bits precision"})
    load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"})
    use_peft: Optional[bool] = field(default=True, metadata={"help": "Wether to use PEFT or not to train adapters"})
    trust_remote_code: Optional[bool] = field(default=False, metadata={"help": "Enable `trust_remote_code`"})
   
    output_dir: Optional[str] = field(default="output", metadata={"help": "the output directory"})
    peft_lora_r: Optional[int] = field(default=64, metadata={"help": "the r parameter of the LoRA adapters"})
    peft_lora_alpha: Optional[int] = field(default=16, metadata={"help": "the alpha parameter of the LoRA adapters"})
    logging_steps: Optional[int] = field(default=5, metadata={"help": "the number of logging steps"})
    token: Optional[bool] = field(default="True", metadata={"help": "Use HF auth token to access the model"})
    num_train_epochs: Optional[int] = field(default=3, metadata={"help": "the number of training epochs"})
    max_steps: Optional[int] = field(default=-1, metadata={"help": "the number of training steps"})
    save_steps: Optional[int] = field(default=1000, metadata={"help": "Number of updates steps before two checkpoint saves"})
    save_total_limit: Optional[int] = field(default=10, metadata={"help": "Limits total number of checkpoints."})
    push_to_hub: Optional[bool] = field(default=False, metadata={"help": "Push the model to HF Hub"})
    hub_model_id: Optional[str] = field(default="mistral-7b-finetuned-ultrachat", metadata={"help": "The name of the model on HF Hub"})


parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]

# Step 1: Load the dataset
tokenizer = AutoTokenizer.from_pretrained(script_args.model_name)
tokenizer.padding_side = 'right'
tokenizer.pad_token = tokenizer.eos_token

dataset = load_dataset(script_args.dataset_name, split="train[:200]")
dataset = dataset.train_test_split(test_size=0.1)

def prepare_dialogue(example):
    text = ""
    for idx, msg in enumerate(example["data"]):
        if idx % 2 == 0:
            text += f"<|user|>\n{msg}{tokenizer.eos_token}\n"
        else:
            text += f"<|assistant|>\n{msg}{tokenizer.eos_token}\n"
    example["text"] = text
    return example

dataset = dataset.map(prepare_dialogue, num_proc=4, remove_columns=["id", "data"])


# Step 2: Load the model
if script_args.load_in_8bit and script_args.load_in_4bit:
    raise ValueError("You can't load the model in 8 bits and 4 bits at the same time")
elif script_args.load_in_8bit or script_args.load_in_4bit:
    quantization_config = BitsAndBytesConfig(
        load_in_8bit=script_args.load_in_8bit, load_in_4bit=script_args.load_in_4bit
    )
    # Copy the model to each device
    device_map = {"": Accelerator().local_process_index}
    torch_dtype = torch.bfloat16
else:
    # device_map = "auto"
    device_map = None
    quantization_config = None
    torch_dtype = None

model = AutoModelForCausalLM.from_pretrained(
    script_args.model_name,
    quantization_config=quantization_config,
    device_map=device_map,
    trust_remote_code=script_args.trust_remote_code,
    torch_dtype=torch_dtype,
    token=script_args.token,
)


# Step 4: Define the LoraConfig
if script_args.use_peft:
    peft_config = LoraConfig(
        r=script_args.peft_lora_r,
        lora_alpha=script_args.peft_lora_alpha,
        bias="none",
        task_type="CAUSAL_LM",
    )
else:
    peft_config = None



training_args = TrainingArguments(
    output_dir=script_args.output_dir,
    per_device_train_batch_size=script_args.batch_size,
    gradient_accumulation_steps=script_args.gradient_accumulation_steps,
    gradient_checkpointing=True,
    learning_rate=script_args.learning_rate,
    logging_steps=script_args.logging_steps,
    num_train_epochs=script_args.num_train_epochs,
    max_steps=script_args.max_steps,
    report_to=script_args.log_with,
    save_steps=script_args.save_steps,
    save_total_limit=script_args.save_total_limit,
    # push_to_hub=script_args.push_to_hub,
    # hub_model_id=script_args.hub_model_id,
    bf16=True,
    lr_scheduler_type="cosine",
    warmup_ratio=0.1,
    evaluation_strategy=script_args.evaluation_strategy,
    eval_steps=script_args.eval_steps,
    logging_first_step=True,
)

def my_compute_metrics(p):
    predictions, labels = p

    return {
        'precision': 1,
        'recall': 1,
        'f1': 1,
    }

trainer = SFTTrainer(
    model=model,
    args=training_args,
    max_seq_length=script_args.seq_length,
    train_dataset=dataset["train"],
    eval_dataset=dataset["test"],
    dataset_text_field=script_args.dataset_text_field,
    peft_config=peft_config,
    packing=False,
    tokenizer=tokenizer,
    compute_metrics=my_compute_metrics
)

trainer.train()

# Step 6: Save the model
trainer.save_model(script_args.output_dir)