File size: 2,455 Bytes
cbff41a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "5"
import torch
from torch import nn
from transformers import Trainer, TrainingArguments
from transformers import AutoTokenizer, AutoModel
from datasets import load_dataset
# 自定义模型,继承自nn.Module或者transformers提供的预训练模型类
class MyCustomModel(nn.Module):
def __init__(self, num_labels):
super(MyCustomModel, self).__init__()
self.num_labels = num_labels
self.pretrained_model = AutoModel.from_pretrained("bert-base-uncased")
self.classifier = nn.Linear(self.pretrained_model.config.hidden_size, num_labels)
def forward(self, input_ids, attention_mask=None, labels=None):
outputs = self.pretrained_model(input_ids, attention_mask=attention_mask)
sequence_output = outputs[1]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return {"loss": loss, "logits": logits} if loss is not None else logits
# 加载数据集并预处理
dataset = load_dataset("glue", "mrpc")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def preprocess_function(examples):
# Tokenize the inputs (pair of sentences)
return tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, padding=True)
from transformers import DataCollatorWithPadding
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
small_train_dataset = dataset["train"].shuffle(seed=42).select(range(500)) # 选择前500个样本
small_train_dataset = small_train_dataset.map(preprocess_function, batched=True)
for i in small_train_dataset:
print(i)
# 自定义模型实例化
model = MyCustomModel(num_labels=2).to("cuda")
# 定义训练参数
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=8,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
)
# 初始化Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=small_train_dataset,
data_collator=data_collator,
compute_metrics=None, # 如果需要可以添加计算指标的函数
)
# 训练模型
trainer.train()
# 保存模型
model.save_pretrained("./my_custom_model") |