Upload config.json with huggingface_hub
Browse files- config.json +37 -359
config.json
CHANGED
|
@@ -1,360 +1,38 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
```
|
| 40 |
-
pip install -U FlagEmbedding
|
| 41 |
-
```
|
| 42 |
-
|
| 43 |
-
#### For normal reranker (bge-reranker-base / bge-reranker-large / bge-reranker-v2-m3 )
|
| 44 |
-
|
| 45 |
-
Get relevance scores (higher scores indicate more relevance):
|
| 46 |
-
|
| 47 |
-
```python
|
| 48 |
-
from FlagEmbedding import FlagReranker
|
| 49 |
-
reranker = FlagReranker('BAAI/bge-reranker-v2-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
| 50 |
-
|
| 51 |
-
score = reranker.compute_score(['query', 'passage'])
|
| 52 |
-
print(score) # -5.65234375
|
| 53 |
-
|
| 54 |
-
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
|
| 55 |
-
score = reranker.compute_score(['query', 'passage'], normalize=True)
|
| 56 |
-
print(score) # 0.003497010252573502
|
| 57 |
-
|
| 58 |
-
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
|
| 59 |
-
print(scores) # [-8.1875, 5.26171875]
|
| 60 |
-
|
| 61 |
-
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
|
| 62 |
-
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], normalize=True)
|
| 63 |
-
print(scores) # [0.00027803096387751553, 0.9948403768236574]
|
| 64 |
-
```
|
| 65 |
-
|
| 66 |
-
#### For LLM-based reranker
|
| 67 |
-
|
| 68 |
-
```python
|
| 69 |
-
from FlagEmbedding import FlagLLMReranker
|
| 70 |
-
reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_bf16=True) # Setting use_bf16 to True speeds up computation with a slight performance degradation
|
| 71 |
-
|
| 72 |
-
score = reranker.compute_score(['query', 'passage'])
|
| 73 |
-
print(score) # 2.15625
|
| 74 |
-
|
| 75 |
-
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
|
| 76 |
-
print(scores) # [-0.84765625, 10.625]
|
| 77 |
-
```
|
| 78 |
-
|
| 79 |
-
#### For LLM-based layerwise reranker
|
| 80 |
-
|
| 81 |
-
```python
|
| 82 |
-
from FlagEmbedding import LayerWiseFlagLLMReranker
|
| 83 |
-
reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_bf16=True) # Setting use_bf16 to True speeds up computation with a slight performance degradation
|
| 84 |
-
|
| 85 |
-
score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
|
| 86 |
-
print(score) # -7.03125
|
| 87 |
-
|
| 88 |
-
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], cutoff_layers=[28])
|
| 89 |
-
print(scores) # [-10.0, 1.8203125]
|
| 90 |
-
```
|
| 91 |
-
|
| 92 |
-
### Using Huggingface transformers
|
| 93 |
-
|
| 94 |
-
#### For normal reranker (bge-reranker-base / bge-reranker-large / bge-reranker-v2-m3 )
|
| 95 |
-
|
| 96 |
-
Get relevance scores (higher scores indicate more relevance):
|
| 97 |
-
|
| 98 |
-
```python
|
| 99 |
-
import torch
|
| 100 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 101 |
-
|
| 102 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-m3')
|
| 103 |
-
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-v2-m3')
|
| 104 |
-
model.eval()
|
| 105 |
-
|
| 106 |
-
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
| 107 |
-
with torch.no_grad():
|
| 108 |
-
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
| 109 |
-
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
|
| 110 |
-
print(scores)
|
| 111 |
-
```
|
| 112 |
-
|
| 113 |
-
#### For LLM-based reranker
|
| 114 |
-
|
| 115 |
-
```python
|
| 116 |
-
import torch
|
| 117 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 118 |
-
|
| 119 |
-
def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
|
| 120 |
-
if prompt is None:
|
| 121 |
-
prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'."
|
| 122 |
-
sep = "\n"
|
| 123 |
-
prompt_inputs = tokenizer(prompt,
|
| 124 |
-
return_tensors=None,
|
| 125 |
-
add_special_tokens=False)['input_ids']
|
| 126 |
-
sep_inputs = tokenizer(sep,
|
| 127 |
-
return_tensors=None,
|
| 128 |
-
add_special_tokens=False)['input_ids']
|
| 129 |
-
inputs = []
|
| 130 |
-
for query, passage in pairs:
|
| 131 |
-
query_inputs = tokenizer(f'A: {query}',
|
| 132 |
-
return_tensors=None,
|
| 133 |
-
add_special_tokens=False,
|
| 134 |
-
max_length=max_length * 3 // 4,
|
| 135 |
-
truncation=True)
|
| 136 |
-
passage_inputs = tokenizer(f'B: {passage}',
|
| 137 |
-
return_tensors=None,
|
| 138 |
-
add_special_tokens=False,
|
| 139 |
-
max_length=max_length,
|
| 140 |
-
truncation=True)
|
| 141 |
-
item = tokenizer.prepare_for_model(
|
| 142 |
-
[tokenizer.bos_token_id] + query_inputs['input_ids'],
|
| 143 |
-
sep_inputs + passage_inputs['input_ids'],
|
| 144 |
-
truncation='only_second',
|
| 145 |
-
max_length=max_length,
|
| 146 |
-
padding=False,
|
| 147 |
-
return_attention_mask=False,
|
| 148 |
-
return_token_type_ids=False,
|
| 149 |
-
add_special_tokens=False
|
| 150 |
-
)
|
| 151 |
-
item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs
|
| 152 |
-
item['attention_mask'] = [1] * len(item['input_ids'])
|
| 153 |
-
inputs.append(item)
|
| 154 |
-
return tokenizer.pad(
|
| 155 |
-
inputs,
|
| 156 |
-
padding=True,
|
| 157 |
-
max_length=max_length + len(sep_inputs) + len(prompt_inputs),
|
| 158 |
-
pad_to_multiple_of=8,
|
| 159 |
-
return_tensors='pt',
|
| 160 |
-
)
|
| 161 |
-
|
| 162 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-gemma')
|
| 163 |
-
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-gemma')
|
| 164 |
-
yes_loc = tokenizer('Yes', add_special_tokens=False)['input_ids'][0]
|
| 165 |
-
model.eval()
|
| 166 |
-
|
| 167 |
-
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
| 168 |
-
with torch.no_grad():
|
| 169 |
-
inputs = get_inputs(pairs, tokenizer)
|
| 170 |
-
scores = model(**inputs, return_dict=True).logits[:, -1, yes_loc].view(-1, ).float()
|
| 171 |
-
print(scores)
|
| 172 |
-
```
|
| 173 |
-
|
| 174 |
-
#### For LLM-based layerwise reranker
|
| 175 |
-
|
| 176 |
-
```python
|
| 177 |
-
import torch
|
| 178 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 179 |
-
|
| 180 |
-
def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
|
| 181 |
-
if prompt is None:
|
| 182 |
-
prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'."
|
| 183 |
-
sep = "\n"
|
| 184 |
-
prompt_inputs = tokenizer(prompt,
|
| 185 |
-
return_tensors=None,
|
| 186 |
-
add_special_tokens=False)['input_ids']
|
| 187 |
-
sep_inputs = tokenizer(sep,
|
| 188 |
-
return_tensors=None,
|
| 189 |
-
add_special_tokens=False)['input_ids']
|
| 190 |
-
inputs = []
|
| 191 |
-
for query, passage in pairs:
|
| 192 |
-
query_inputs = tokenizer(f'A: {query}',
|
| 193 |
-
return_tensors=None,
|
| 194 |
-
add_special_tokens=False,
|
| 195 |
-
max_length=max_length * 3 // 4,
|
| 196 |
-
truncation=True)
|
| 197 |
-
passage_inputs = tokenizer(f'B: {passage}',
|
| 198 |
-
return_tensors=None,
|
| 199 |
-
add_special_tokens=False,
|
| 200 |
-
max_length=max_length,
|
| 201 |
-
truncation=True)
|
| 202 |
-
item = tokenizer.prepare_for_model(
|
| 203 |
-
[tokenizer.bos_token_id] + query_inputs['input_ids'],
|
| 204 |
-
sep_inputs + passage_inputs['input_ids'],
|
| 205 |
-
truncation='only_second',
|
| 206 |
-
max_length=max_length,
|
| 207 |
-
padding=False,
|
| 208 |
-
return_attention_mask=False,
|
| 209 |
-
return_token_type_ids=False,
|
| 210 |
-
add_special_tokens=False
|
| 211 |
-
)
|
| 212 |
-
item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs
|
| 213 |
-
item['attention_mask'] = [1] * len(item['input_ids'])
|
| 214 |
-
inputs.append(item)
|
| 215 |
-
return tokenizer.pad(
|
| 216 |
-
inputs,
|
| 217 |
-
padding=True,
|
| 218 |
-
max_length=max_length + len(sep_inputs) + len(prompt_inputs),
|
| 219 |
-
pad_to_multiple_of=8,
|
| 220 |
-
return_tensors='pt',
|
| 221 |
-
)
|
| 222 |
-
|
| 223 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
|
| 224 |
-
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
|
| 225 |
-
model = model.to('cuda')
|
| 226 |
-
model.eval()
|
| 227 |
-
|
| 228 |
-
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
| 229 |
-
with torch.no_grad():
|
| 230 |
-
inputs = get_inputs(pairs, tokenizer).to(model.device)
|
| 231 |
-
all_scores = model(**inputs, return_dict=True, cutoff_layers=[28])
|
| 232 |
-
all_scores = [scores[:, -1].view(-1, ).float() for scores in all_scores[0]]
|
| 233 |
-
print(all_scores)
|
| 234 |
-
```
|
| 235 |
-
|
| 236 |
-
## Fine-tune
|
| 237 |
-
|
| 238 |
-
You can fine-tune the reranker with the following code:
|
| 239 |
-
|
| 240 |
-
**For llm-based reranker**
|
| 241 |
-
|
| 242 |
-
```shell
|
| 243 |
-
torchrun --nproc_per_node {number of gpus} \
|
| 244 |
-
-m FlagEmbedding.llm_reranker.finetune_for_instruction.run \
|
| 245 |
-
--output_dir {path to save model} \
|
| 246 |
-
--model_name_or_path BAAI/bge-reranker-v2-gemma \
|
| 247 |
-
--train_data ./toy_finetune_data.jsonl \
|
| 248 |
-
--learning_rate 2e-4 \
|
| 249 |
-
--num_train_epochs 1 \
|
| 250 |
-
--per_device_train_batch_size 1 \
|
| 251 |
-
--gradient_accumulation_steps 16 \
|
| 252 |
-
--dataloader_drop_last True \
|
| 253 |
-
--query_max_len 512 \
|
| 254 |
-
--passage_max_len 512 \
|
| 255 |
-
--train_group_size 16 \
|
| 256 |
-
--logging_steps 1 \
|
| 257 |
-
--save_steps 2000 \
|
| 258 |
-
--save_total_limit 50 \
|
| 259 |
-
--ddp_find_unused_parameters False \
|
| 260 |
-
--gradient_checkpointing \
|
| 261 |
-
--deepspeed stage1.json \
|
| 262 |
-
--warmup_ratio 0.1 \
|
| 263 |
-
--bf16 \
|
| 264 |
-
--use_lora True \
|
| 265 |
-
--lora_rank 32 \
|
| 266 |
-
--lora_alpha 64 \
|
| 267 |
-
--use_flash_attn True \
|
| 268 |
-
--target_modules q_proj k_proj v_proj o_proj
|
| 269 |
-
```
|
| 270 |
-
|
| 271 |
-
**For llm-based layerwise reranker**
|
| 272 |
-
|
| 273 |
-
```shell
|
| 274 |
-
torchrun --nproc_per_node {number of gpus} \
|
| 275 |
-
-m FlagEmbedding.llm_reranker.finetune_for_layerwise.run \
|
| 276 |
-
--output_dir {path to save model} \
|
| 277 |
-
--model_name_or_path BAAI/bge-reranker-v2-minicpm-layerwise \
|
| 278 |
-
--train_data ./toy_finetune_data.jsonl \
|
| 279 |
-
--learning_rate 2e-4 \
|
| 280 |
-
--num_train_epochs 1 \
|
| 281 |
-
--per_device_train_batch_size 1 \
|
| 282 |
-
--gradient_accumulation_steps 16 \
|
| 283 |
-
--dataloader_drop_last True \
|
| 284 |
-
--query_max_len 512 \
|
| 285 |
-
--passage_max_len 512 \
|
| 286 |
-
--train_group_size 16 \
|
| 287 |
-
--logging_steps 1 \
|
| 288 |
-
--save_steps 2000 \
|
| 289 |
-
--save_total_limit 50 \
|
| 290 |
-
--ddp_find_unused_parameters False \
|
| 291 |
-
--gradient_checkpointing \
|
| 292 |
-
--deepspeed stage1.json \
|
| 293 |
-
--warmup_ratio 0.1 \
|
| 294 |
-
--bf16 \
|
| 295 |
-
--use_lora True \
|
| 296 |
-
--lora_rank 32 \
|
| 297 |
-
--lora_alpha 64 \
|
| 298 |
-
--use_flash_attn True \
|
| 299 |
-
--target_modules q_proj k_proj v_proj o_proj \
|
| 300 |
-
--start_layer 8 \
|
| 301 |
-
--head_multi True \
|
| 302 |
-
--head_type simple
|
| 303 |
-
```
|
| 304 |
-
|
| 305 |
-
Our rerankers are initialized from [google/gemma-2b](https://huggingface.co/google/gemma-2b) (for llm-based reranker) and [openbmb/MiniCPM-2B-dpo-fp16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-fp16/tree/main) (for llm-based layerwise reranker), and we train it on a mixture of multilingual datasets:
|
| 306 |
-
|
| 307 |
-
- [bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data)
|
| 308 |
-
- [quora train data](https://huggingface.co/datasets/quora)
|
| 309 |
-
- [fever train data](https://fever.ai/dataset/fever.html)
|
| 310 |
-
|
| 311 |
-
## Evaluation
|
| 312 |
-
|
| 313 |
-
- llama-index.
|
| 314 |
-
|
| 315 |
-

|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
- BEIR.
|
| 319 |
-
|
| 320 |
-
rereank the top 100 results from bge-en-v1.5 large.
|
| 321 |
-
|
| 322 |
-

|
| 323 |
-
|
| 324 |
-
rereank the top 100 results from e5 mistral 7b instruct.
|
| 325 |
-
|
| 326 |
-

|
| 327 |
-
|
| 328 |
-
- CMTEB-retrieval.
|
| 329 |
-
It rereank the top 100 results from bge-zh-v1.5 large.
|
| 330 |
-
|
| 331 |
-

|
| 332 |
-
|
| 333 |
-
- miracl (multi-language).
|
| 334 |
-
It rereank the top 100 results from bge-m3.
|
| 335 |
-
|
| 336 |
-

|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
## Citation
|
| 341 |
-
|
| 342 |
-
If you find this repository useful, please consider giving a star :star: and citation
|
| 343 |
-
|
| 344 |
-
```
|
| 345 |
-
@misc{li2023making,
|
| 346 |
-
title={Making Large Language Models A Better Foundation For Dense Retrieval},
|
| 347 |
-
author={Chaofan Li and Zheng Liu and Shitao Xiao and Yingxia Shao},
|
| 348 |
-
year={2023},
|
| 349 |
-
eprint={2312.15503},
|
| 350 |
-
archivePrefix={arXiv},
|
| 351 |
-
primaryClass={cs.CL}
|
| 352 |
}
|
| 353 |
-
@misc{chen2024bge,
|
| 354 |
-
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
| 355 |
-
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
| 356 |
-
year={2024},
|
| 357 |
-
eprint={2402.03216},
|
| 358 |
-
archivePrefix={arXiv},
|
| 359 |
-
primaryClass={cs.CL}
|
| 360 |
-
}
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "BAAI/bge-reranker-v2-minicpm-layerwise",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"LayerWiseMiniCPMForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_bias": false,
|
| 7 |
+
"attention_dropout": 0.0,
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "BAAI/bge-reranker-v2-minicpm-layerwise--configuration_minicpm_reranker.LayerWiseMiniCPMConfig",
|
| 10 |
+
"AutoModel": "BAAI/bge-reranker-v2-minicpm-layerwise--modeling_minicpm_reranker.LayerWiseMiniCPMModel",
|
| 11 |
+
"AutoModelForCausalLM": "BAAI/bge-reranker-v2-minicpm-layerwise--modeling_minicpm_reranker.LayerWiseMiniCPMForCausalLM"
|
| 12 |
+
},
|
| 13 |
+
"bos_token_id": 1,
|
| 14 |
+
"dim_model_base": 256,
|
| 15 |
+
"eos_token_id": 2,
|
| 16 |
+
"head_multi": true,
|
| 17 |
+
"head_type": "simple",
|
| 18 |
+
"hidden_act": "silu",
|
| 19 |
+
"hidden_size": 2304,
|
| 20 |
+
"initializer_range": 0.1,
|
| 21 |
+
"intermediate_size": 5760,
|
| 22 |
+
"max_position_embeddings": 2048,
|
| 23 |
+
"model_type": "minicpm",
|
| 24 |
+
"num_attention_heads": 36,
|
| 25 |
+
"num_hidden_layers": 40,
|
| 26 |
+
"num_key_value_heads": 36,
|
| 27 |
+
"pretraining_tp": 1,
|
| 28 |
+
"rms_norm_eps": 1e-05,
|
| 29 |
+
"rope_scaling": null,
|
| 30 |
+
"rope_theta": 10000.0,
|
| 31 |
+
"scale_depth": 1.4,
|
| 32 |
+
"scale_emb": 12,
|
| 33 |
+
"start_layer": 8,
|
| 34 |
+
"torch_dtype": "bfloat16",
|
| 35 |
+
"transformers_version": "4.38.1",
|
| 36 |
+
"use_cache": false,
|
| 37 |
+
"vocab_size": 122753
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|