File size: 3,394 Bytes
c4b87d2
 
0a58567
c4b87d2
 
 
 
 
 
 
 
 
 
 
 
 
0a58567
c4b87d2
 
 
 
 
 
 
 
 
 
 
 
 
 
0a58567
c4b87d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a58567
c4b87d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a58567
c4b87d2
 
 
 
 
 
 
 
 
 
 
 
0a58567
c4b87d2
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import argparse
import logging
import os

import torch
from examples.utils import (
    load_model,
    run_inference_and_plot,
)
from src.data.containers import BatchTimeSeriesContainer
from src.synthetic_generation.generator_params import SineWaveGeneratorParams
from src.synthetic_generation.sine_waves.sine_wave_generator_wrapper import (
    SineWaveGeneratorWrapper,
)

# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)


def main():
    """Main execution function."""
    # CLI
    parser = argparse.ArgumentParser(description="Quick start demo for TimeSeriesModel")
    parser.add_argument(
        "--config",
        default="configs/example.yaml",
        help="Path to model config YAML (default: configs/example.yaml)",
    )
    parser.add_argument(
        "--checkpoint",
        default="models/checkpoint_38M.pth",
        help="Path to model checkpoint file (default: models/checkpoint_38M.pth)",
    )
    parser.add_argument("--batch_size", type=int, default=3)
    parser.add_argument("--total_length", type=int, default=2048)
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--output_dir", default="outputs")
    args = parser.parse_args()

    # Configuration
    batch_size = args.batch_size
    total_length = args.total_length
    output_dir = args.output_dir
    seed = args.seed
    config_path = args.config
    model_path = args.checkpoint

    # Check if the checkpoint file exists
    if not os.path.exists(model_path):
        logger.error(f"Checkpoint file not found at: {model_path}")
        logger.error(
            "Please ensure 'checkpoint_38M.pth' is in the root directory (or that you've cloned the repo with Git LFS)."
        )
        logger.error("You can also specify a different path using --checkpoint.")
        return  # Exit if no model

    logger.info("=== Time Series Model Demo (Univariate Quantile) ===")

    # 1) Generate synthetic sine wave data
    sine_params = SineWaveGeneratorParams(global_seed=seed, length=total_length)
    sine_generator = SineWaveGeneratorWrapper(sine_params)
    batch = sine_generator.generate_batch(batch_size=batch_size, seed=seed)
    values = torch.from_numpy(batch.values).to(torch.float32)
    if values.ndim == 2:
        values = values.unsqueeze(-1)  # Ensure [B, S, 1] for univariate
    future_length = 256
    history_values = values[:, :-future_length, :]
    future_values = values[:, -future_length:, :]

    # 2) Load the pretrained model (CUDA-only). This demo requires a CUDA GPU.
    if not torch.cuda.is_available():
        raise RuntimeError("CUDA is required to run this demo. No CUDA device detected.")
    device = torch.device("cuda:0")
    model = load_model(config_path=config_path, model_path=model_path, device=device)

    # 3) Pack tensors into the model's input container
    container = BatchTimeSeriesContainer(
        history_values=history_values.to(device),
        future_values=future_values.to(device),
        start=batch.start,
        frequency=batch.frequency,
    )

    # 4) Run inference (bfloat16 on CUDA) and plot results
    run_inference_and_plot(model=model, container=container, output_dir=output_dir, use_bfloat16=True)

    logger.info("=== Demo completed successfully! ===")


if __name__ == "__main__":
    main()